Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.443
Filtrar
1.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561375

RESUMO

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Assuntos
Sarcoma , Animais , Humanos , Camundongos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Sarcoma/genética , Sarcoma/patologia , Ubiquitinação , Regulação para Cima
2.
Sci Rep ; 14(1): 9305, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653804

RESUMO

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , 60611 , Carioferinas , Linfoma Cutâneo de Células T , Receptores Citoplasmáticos e Nucleares , Triazóis , Proteína Supressora de Tumor p53 , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/genética , Apoptose/efeitos dos fármacos , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Triazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
FEBS Lett ; 598(8): 945-955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472156

RESUMO

TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Proteínas de Homeodomínio , Insulina , Animais , Camundongos , Fosforilação/efeitos dos fármacos , Insulina/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proliferação de Células/efeitos dos fármacos , Butadienos/farmacologia
4.
J Biol Chem ; 300(3): 105693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301893

RESUMO

Ubiquitination is a key regulator of protein stability and function. The multifunctional protein p27 is known to be degraded by the proteasome following K48-linked ubiquitination. However, we recently reported that when the ubiquitin-conjugating enzyme UbcH7 (UBE2L3) is overexpressed, p27 is stabilized, and cell cycle is arrested in multiple diverse cell types including eye lens, retina, HEK-293, and HELA cells. However, the ubiquitin ligase associated with this stabilization of p27 remained a mystery. Starting with an in vitro ubiquitination screen, we identified RSP5 as the yeast E3 ligase partner of UbcH7 in the ubiquitination of p27. Screening of the homologous human NEDD4 family of E3 ligases revealed that SMURF1 but not its close homolog SMURF2, stabilizes p27 in cells. We found that SMURF1 ubiquitinates p27 with K29O but not K29R or K63O ubiquitin in vitro, demonstrating a strong preference for K29 chain formation. Consistent with SMURF1/UbcH7 stabilization of p27, we also found that SMURF1, UbcH7, and p27 promote cell migration, whereas knockdown of SMURF1 or UbcH7 reduces cell migration. We further demonstrated the colocalization of SMURF1/p27 and UbcH7/p27 at the leading edge of migrating cells. In sum, these results indicate that SMURF1 and UbcH7 work together to produce K29-linked ubiquitin chains on p27, resulting in the stabilization of p27 and promoting its cell-cycle independent function of regulating cell migration.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Catálise , Movimento Celular/genética , Células HEK293 , Células HeLa , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Estabilidade Proteica , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
5.
Cell Rep ; 42(12): 113539, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38070134

RESUMO

Amino acids are required for cell growth and proliferation, but it remains unclear when and how amino acid availability impinges on the proliferation-quiescence decision. Here, we used time-lapse microscopy and single-cell tracking of cyclin-dependent kinase 2 (CDK2) activity to assess the response of individual cells to withdrawal of single amino acids and found strikingly different cell-cycle effects depending on the amino acid. For example, upon leucine withdrawal, MCF10A cells complete two cell cycles and then enter a CDK2-low quiescence, whereas lysine withdrawal causes immediate cell-cycle stalling. Methionine withdrawal triggers a restriction point phenotype similar to serum starvation or Mek inhibition: upon methionine withdrawal, cells complete their current cell cycle and enter a CDK2-low quiescence after mitosis. Modulation of restriction point regulators p21/p27 or cyclin D1 enables short-term rescue of proliferation under methionine and leucine withdrawal, and to a lesser extent lysine withdrawal, revealing a checkpoint connecting nutrient signaling to cell-cycle entry.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Aminoácidos , Leucina , Lisina , Ciclo Celular , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem do Ciclo Celular , Mitose , Metionina , Quinases relacionadas a CDC2 e CDC28/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
6.
PeerJ ; 11: e16170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868060

RESUMO

Background: Diabetic nephropathy (DN) is a frequent microvascular complication of diabetes. Glomerular mesangial cell (MC) hypertrophy occurs at the initial phase of DN and plays a critical role in the pathogenesis of DN. Given the role of long non coding RNA (lncRNA) in regulating MC hypertrophy and extracellular matrix (ECM) accumulation, our aim was to identify functional lncRNAs during MC hypertrophy. Methods: Here, an lncRNA, C920021L13Rik (L13Rik for short), was identified to be up-regulated in DN progression. The expression of L13Rik in DN patients and diabetic mice was assessed using quantitative real-time PCR (qRT-PCR), and the function of L13Rik in regulating HG-induced MC hypertrophy and ECM accumulation was assessed through flow cytometry and western blotting analysis. Results: The L13Rik levels were significantly increased while the miR-2861 levels were decreased in the peripheral blood of DN patients, the renal tissues of diabetic mice, and HG-treated MCs. Functionally, both L13Rik depletion and miR-2861 overexpression effectively reduced HG-induced cell hypertrophy and ECM accumulation. Mechanistically, L13Rik functioned as a competing endogenous RNA (ceRNA) to sponge miR-2861, resulting in the de-repression of cyclin-dependent kinase inhibitor 1B (CDKN1B), a gene known to regulate cell cycle and MC hypertrophy. Conclusions: Collectively, the current results demonstrate that up-regulated L13Rik is correlated with DN and may be a hopeful therapeutic target for DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , Células Mesangiais/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/genética , Diabetes Mellitus Experimental/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Nefropatias Diabéticas/genética , Hipertrofia/genética , Glucose/farmacologia
7.
Genes Genomics ; 45(12): 1623-1632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856053

RESUMO

BACKGROUND: Human gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. Differential expression of Polycomb repressive complex 2 (PRC2) has been reported in various subtypes of glioma. However, the role of PRC2 in uncontrolled growth in glioma and its underlying molecular mechanisms remain to be elucidated. OBJECTIVE: We aimed to investigate the functional role of PRC2 in human glioblastoma cell growth by silencing SUZ12, the non-catalytic core component of PRC2. METHODS: Knockdown of SUZ12 was achieved by infecting T98G cells with lentivirus carrying sequences specifically targeting SUZ12 (shSUZ12). Gene expression was examined by quantitative PCR and western analysis. The impact of shSUZ12 on cell growth was assessed using a cell proliferation assay. Cell cycle distribution was analyzed by flow cytometry, and protein stability was evaluated in cycloheximide-treated cells. Subcellular localization was examined through immunofluorescence staining and biochemical cytoplasmic-nuclear fractionation. Gene expression analysis was also performed on human specimens from normal brain and glioblastoma patients. RESULTS: SUZ12 knockdown (SUZ12 KD) led to widespread decrease in the PRC2-specific histone mark, accompanied by a slowdown of cell proliferation through G1 arrest. In SUZ12 KD cells, the degradation of CDKN1B protein was reduced, resulting from alterations in the MYC-SKP2-CDKN1B axis. Furthermore, nuclear localization of CDKN1B was enhanced in SUZ12 KD cells. Analysis of human glioblastoma samples yielded increased expression of EZH2 and MYC along with reduced CDKN1B compared to normal human brain tissue. CONCLUSION: Our findings suggest a novel role for SUZ12 in cell proliferation through post-translational regulation of CDKN1B in glioblastoma.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas de Neoplasias/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proliferação de Células , Glioma/genética
8.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443738

RESUMO

Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.


Assuntos
Eritropoetina , Receptores da Eritropoetina , Camundongos , Animais , Receptores da Eritropoetina/metabolismo , Fosforilação , Tirosina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Transdução de Sinais , Eritropoetina/metabolismo , Proliferação de Células
9.
Mol Nutr Food Res ; 67(18): e2300061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436082

RESUMO

SCOPE: This study aims to investigate the anticancer properties of Citrus grandis 'Tomentosa' (CGT) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS: The ethanol extract of CGT (CGTE) is prepared by using anhydrous ethanol and analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), revealing that the main chemical components in CGTE are flavonoids and coumarins, such as naringin, rhoifolin, apigenin, bergaptol, and osthole. CGTE at concentrations without inducing cell death significantly inhibits cell proliferation via inducing cell cycle G1 phase arrest by MTT, colony formation, and flow cytometry assays, implying that CGT has anticancer potential. CGTE markedly inhibits the activity of Skp2-SCF E3 ubiquitin ligase, decreases the protein level of Skp2, and promotes the accumulation of p27 by co-immunoprecipitation (co-IP) and in vivo ubiquitination assay; whereas Skp2 overexpression rescues the effects of CGTE in NSCLC cells. In subcutaneous LLC allograft and A549 xenograft mouse models, CGTE, without causing obvious side effects in mice, significantly inhibits lung tumor growth by targeting the Skp2/p27 signaling pathway. CONCLUSION: These findings demonstrate that CGTE efficiently inhibits NSCLC proliferation both in vitro and in vivo by targeting the Skp2/p27 signaling pathway, suggesting that CGTE may serve as a therapeutic candidate for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citrus , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas Ligases SKP Culina F-Box , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
10.
Sci Rep ; 13(1): 10718, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400515

RESUMO

p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas Quinases Associadas a Fase S , Proteínas Quinases Associadas a Fase S/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclina A/metabolismo , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/metabolismo
11.
Cell Signal ; 109: 110735, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257769

RESUMO

PURPOSE: Cervical Squamous Cell Carcinoma (CSCC) is one of the significant causes of cancer deaths among women. Distinct genetic and epigenetic-altered loci, including chromosomal 11p15.5-15.4, have been identified. CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C, p57KIP2), a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CDKIs), located at 11p15.4, is a putative tumor suppressor. Apart from transcriptional control, S-Phase Kinase Associated Protein 2 (SKP2), an oncogenic E3 ubiquitin ligase, regulates the protein turnover of CDKN1C. But the molecular status of CDKN1C in CSCC and the underlying mechanistic underpinnings have yet to be explored. METHODS: TCGA and other publicly available datasets were analyzed to evaluate the expression of CDKN1C and SKP2. The expression (transcript/protein) was validated in independent CSCC tumors (n = 155). Copy number alteration and promoter methylation were correlated with the expression. Finally, in vitro functional validation was performed. RESULTS: CDKN1C was down-regulated, and SKP2 was up-regulated at the transcript and protein levels in CSCC tumors and the SiHa cell line. Notably, promoter methylation (50%) was associated with the downregulation of the CDKN1C transcript. However, high expression of SKP2 was found to be associated with the decreased expression of CDKN1C protein. Independent treatments with 5-aza-dC, MG132, and SKP2i (SKPin C1) in SiHa cells led to an enhanced expression of CDKN1C protein, validating the mechanism of down-regulation in CSCC. CONCLUSION: Collectively, CDKN1C was down-regulated due to the synergistic effect of promoter hyper-methylation and SKP2 over-expression in CSCC tumors, paving the way for further studies of its role in the pathogenesis of the disease.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação para Baixo/genética , Metilação , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias do Colo do Útero/genética
12.
J Med Chem ; 66(11): 7221-7242, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204466

RESUMO

F-box protein S-phase kinase-associated protein 2 (Skp2) is a component of cullin-RING ligases, which is responsible for recruiting and ubiquitinating substrates and subsequently plays its proteolytic and non-proteolytic role. High expression of Skp2 is frequently observed in multiple aggressive tumor tissues and associated with poor prognosis. Several of the Skp2 inhibitors have been reported in the last decades; however, few of them have shown detailed structure-activity relationship (SAR) and potent bioactivity. Herein, based on the hit compound 11a from our in-house library, we optimize and synthesize a series of new 2,3-diphenylpyrazine-based inhibitors targeting the Skp2-Cks1 interaction and further systematically study the SAR. Among them, compound 14i shows potent activity against the Skp2-Cks1 interaction with an IC50 value of 2.8 µM and against PC-3 and MGC-803 cells with IC50 values of 4.8 and 7.0 µM, respectively. Most importantly, compound 14i exhibited effectively anticancer effects on PC-3 and MGC-803 xenograft mice models without obvious toxicity.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias , Humanos , Camundongos , Animais , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo
13.
Oncogene ; 42(14): 1088-1100, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792756

RESUMO

PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.


Assuntos
Glioblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
14.
Cell Mol Life Sci ; 80(3): 70, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36820913

RESUMO

The fusion oncoprotein RUNX1/ETO which results from the chromosomal translocation t (8;21) in acute myeloid leukemia (AML) is an essential driver of leukemic maintenance. We have previously shown that RUNX1/ETO knockdown impairs expression of the protein component of telomerase, TERT. However, the underlying molecular mechanism of how RUNX1/ETO controls TERT expression has not been fully elucidated. Here we show that RUNX1/ETO binds to an intergenic region 18 kb upstream of the TERT transcriptional start site and to a site located in intron 6 of TERT. Loss of RUNX1/ETO binding precedes inhibition of TERT expression. Repression of TERT expression is also dependent on the destabilization of the E3 ubiquitin ligase SKP2 and the resultant accumulation of the cell cycle inhibitor CDKN1B, that are both associated with RUNX1/ETO knockdown. Increased CDKN1B protein levels ultimately diminished TERT transcription with E2F1/Rb involvement. Collectively, our results show that RUNX1/ETO controls TERT expression directly by binding to its locus and indirectly via a SKP2-CDKN1B-E2F1/Rb axis.


Assuntos
Leucemia Mieloide Aguda , Telomerase , Humanos , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Telomerase/metabolismo , Translocação Genética
15.
Cell Mol Life Sci ; 80(1): 36, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627412

RESUMO

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Neurogênese , Fatores de Transcrição SOXB1 , Animais , Camundongos , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Expressão Gênica , Neurogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
16.
Adv Sci (Weinh) ; 10(7): e2204599, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638271

RESUMO

P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Inibidor de Quinase Dependente de Ciclina p27 , RNA Longo não Codificante , Humanos , Dano ao DNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
17.
Cancer Sci ; 114(1): 152-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36102493

RESUMO

Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , RNA , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , DNA Mitocondrial , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Proliferação de Células/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
18.
FEBS J ; 290(8): 2064-2084, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36401795

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and functions as a tumour suppressor in different cancer models. In the present study, we report detailed characterization of 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ) as a select modulator of AhR-regulated transcription (SMAhRT) with anti-cancer actions. Treatment of lung cancer cells with 11-Cl-BBQ induced potent and sustained AhR-dependent anti-proliferative effects by promoting G1 phase cell cycle arrest. Investigation of 11-Cl-BBQ-induced transcription in H460 cells with or without the AhR expression by RNA-sequencing revealed activation of p53 signalling. In addition, 11-Cl-BBQ suppressed multiple pathways involved in DNA replication and increased expression of cyclin-dependent kinase inhibitors, including p27Kip1 , in an AhR-dependent manner. CRISPR/Cas9 knockout of individual genes revealed the requirement for both p53 and p27Kip1 for the AhR-mediated anti-proliferative effects. Our results identify 11-Cl-BBQ as a potential lung cancer therapeutic, highlight the feasibility of targeting AhR and provide important mechanistic insights into AhR-mediated-anticancer actions.


Assuntos
Neoplasias Pulmonares , Receptores de Hidrocarboneto Arílico , Humanos , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , RNA , Proteína Supressora de Tumor p53/genética
19.
Mol Cell Biol ; 42(11): e0021722, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317925

RESUMO

Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G1 and G2/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects. In particular, the mechanism of G2/M-phase arrest caused by splicing inhibition is completely unknown. Here, we found that lower and higher concentrations of pladienolide B caused M-phase and G2-phase arrest, respectively. We analyzed protein levels of cell cycle regulators and found that a truncated form of the p27 cyclin-dependent kinase inhibitor, named p27*, accumulated in G2-arrested cells. Overexpression of p27* caused partial G2-phase arrest. Conversely, knockdown of p27* accelerated exit from G2/M phase after washout of splicing inhibitor. These results suggest that p27* contributes to G2/M-phase arrest caused by splicing inhibition. We also found that p27* bound to and inhibited M-phase cyclins, although it is well known that p27 regulates the G1/S transition. Intriguingly, p27*, but not full-length p27, was resistant to proteasomal degradation and remained in G2/M phase. These results suggest that p27*, which is a very stable truncated protein in G2/M phase, contributes to G2-phase arrest caused by splicing inhibition.


Assuntos
Ciclinas , Precursores de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclinas/genética , Mitose , Quinases Ciclina-Dependentes/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/genética
20.
Exp Cell Res ; 419(1): 113295, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926659

RESUMO

Among the hallmarks of cholangiocarcinoma (CCA) progression and unresponsiveness to therapy is impaired ubiquitin-dependent degradation of nuclear tumor suppressor protein. In the previous stage, our research group found that as a key tumor suppressor, nuclear dysfunction of p27kip1 is closely related to chemotherapy resistance of CCA, but the specific mechanism is unclear. It was recently shown that p27kip1-driven tumors were strongly dependent on the SUMO pathway. RNF4, as the SUMO-targeted ubiquitin ligase (STUbL), identifies SUMOylated proteins as a substrate through sumo-interacting motifs (SIM) and causes its degradation via the ubiquitin proteasome pathway. Here we described that the expression of RNF4 was upregulated in CCA tissues and related to malignant features. Silencing RNF4 arrested human CCA cells at the G1 phase, which was associated with the upregulation of p27kip1 and the downregulation of its downstream cycle-related proteins. Silencing RNF4 inhibited cell proliferation and migration, increased cell apoptosis, and sensitized CCA cells to treatment of chemotherapeutic drugs in vitro. Immunofluorescence showed that p27kip1 and RNF4 were mainly co-located in the nucleus. Immunoprecipitation and Western blot showed that p27kip1 was a target protein for SUMOylation and high expression of RNF4 decreased the levels of nuclear p27kip1, enhanced the levels of ubiquitinated and SUMOylated p27kip1, indicating that RNF4 could regulate cell cycle progression via recognizing SUMOylated p27kip1 and facilitating its ubiquitination degradation. These data indicate that RNF4-mediated ubiquitination degradation of SUMOylated proteins is a novel regulatory mechanism of p27kip1 dysfunction and CCA tumorigenesis, which provides a potential option for therapeutic intervention of CCA.


Assuntos
Colangiocarcinoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Carcinogênese , Ciclo Celular , Humanos , Sumoilação , Ubiquitina , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...